Wednesday, June 6, 2012

GIST NOTES 19 - UML


GIST NOTES 19 - UML

[DISCLAIMER: This is solely for non-commercial use. I don't claim ownership of this content. This is a crux of all my readings studies and analysis. Some of them are excerpts from famous books/sources on  the subject. Some of them are my contemplation upon experiments with direct hand coded code samples using IDE or notepad.


I've created this mainly to reduce an entire book into few pages of critical content that we should never forget. Even after years, you don't need to read the entire book again to get back its philosophy. I hope these notes will help you to replay the entire book in your mind once again.]


http://www.ibm.com/developerworks/rational/library/769.html#N100D7

>Class diagram represents the static structure of the system
>Classes in the class diagram can represent logical things or actual implementing classes
>In my experience, almost every developer knows what this diagram is, yet I find that most programmers draw the relationship lines incorrectly. For a class diagram like the one in Figure 3, you should draw the inheritance relationship1 using a line with an arrowhead at the top pointing to the super class, and the arrowhead should be a completed triangle. [Note: For more information on inheritance and other object-oriented principles, see the Java tutorial What Is Inheritance?] An association relationship should be a solid line if both classes are aware of each other and a line with an open arrowhead if the association is known by only one of the classes.

Figure 3: A complete class diagram, including the class object shown in Figure 2

Larger view of Figure 3.
In Figure 3, we see both the inheritance relationship and two association relationships. The CDSalesReport class inherits from the Report class. A CDSalesReport is associated with one CD, but the CD class doesn't know anything about the CDSalesReport class. The CD and the Band classes both know about each other, and both classes can be associated to one or more of each other.

>Use-case diagram
A use case illustrates a unit of functionality provided by the system. The main purpose of the use-case diagram is to help development teams visualize the functional requirements of a system, including the relationship of "actors" (human beings who will interact with the system) to essential processes, as well as the relationships among different use cases.

>Sequence diagram
Sequence diagrams show a detailed flow for a specific use case or even just part of a specific use case. They are almost self explanatory; they show the calls between the different objects in their sequence and can show, at a detailed level, different calls to different objects.
A sequence diagram has two dimensions: The vertical dimension shows the sequence of messages/calls in the time order that they occur; the horizontal dimension shows the object instances to which the messages are sent.

>Statechart diagram
The statechart diagram models the different states that a class can be in and how that class transitions from state to state. It can be argued that every class has a state, but that every class shouldn't have a statechart diagram. Only classes with "interesting" states — that is, classes with three or more potential states during system activity — should be modeled.

>Activity diagram
Activity diagrams show the procedural flow of control between two or more class objects while processing an activity. Activity diagrams can be used to model higher-level business process at the business unit level, or to model low-level internal class actions. In my experience, activity diagrams are best used to model higher-level processes, such as how the company is currently doing business, or how it would like to do business. This is because activity diagrams are "less technical" in appearance, compared to sequence diagrams, and business-minded people tend to understand them more quickly.

>Component diagram
A component diagram provides a physical view of the system. Its purpose is to show the dependencies that the software has on the other software components (e.g., software libraries) in the system. The diagram can be shown at a very high level, with just the large-grain components, or it can be shown at the component package level. [Note: The phrase component package level is a programming language-neutral way of referring to class container levels such as .NET's namespaces (e.g., System.Web.UI) or Java's packages (e.g., java.util).]

>Deployment diagram
The deployment diagram shows how a system will be physically deployed in the hardware environment. Its purpose is to show where the different components of the system will physically run and how they will communicate with each other. Since the diagram models the physical runtime, a system's production staff will make considerable use of this diagram.
The notation in a deployment diagram includes the notation elements used in a component diagram, with a couple of additions, including the concept of a node. A node represents either a physical machine or a virtual machine node (e.g., a mainframe node). To model a node, simply draw a three-dimensional cube with the name of the node at the top of the cube. Use the naming convention used in sequence diagrams: [instance name] : [instance type] (e.g., "w3reporting.myco.com : Application Server").


No comments:

Post a Comment